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Abstract

This study discusses a framework for market making in Non-Fungible To-
kens (NFTs) which represent unique digital assets in a low liquidity and high
price volatility environment. The market making problem differs from fungible
cryptocurrencies as there is no layered orderbook structure of market depth and
market makers would need to hold inventory on the other side of the trades
for a non-negligible horizon. We have developed a model for prices in market
making context in terms of embedded optionality of trading an NFT at either
the floor or a price that is closer to the appraisal value. In order to develop the
model for optionality of trading an NFT, we have defined a model on the joint
price dynamics of the NFT and its corresponding floor. The price dynamics were
decomposed into an intrinsic price diffusion process and jump components re-
lating to liquidity events. Besides NFTs, the approach presented in this paper
could provide insights for market making in other ”non-fungible” asset classes
such as art or housing.
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1 Introduction

The Non-Fungible Token (NFTs) market has been one of the most rapidly growing
segments within the digital asset industry. In 2021, NFT sales volume exceeded 25
billion USD with weekly trading volume reaching up to a billion dollar [5]. Despite
the large growth and volume, there has been limited research on market making in
NFTs and most crypto market makers have not yet ventured into market making
of the non-fungible counterparts. The professional trading ecosystem is yet to be
properly researched and developed.
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†2 HashCurve, Caviar, UCL Centre for Blockchain Technologies
‡3 University of Oxford, Caviar
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One could view market making as a series of actions where an equilibrium is
found that balances supply and demand. Traditionally market makers provide
inventory and search cost reduction services. Market making can thus be diffi-
cult for low liquidity assets as traders face larger inventory risk and higher search
costs. The NFT market presents a low liquidity and high price volatility envi-
ronment with long potential holding times to sell near fair appraisal prices. NFT
market makers would thus need to hold a volatile asset in their inventory with the
risk of significant downward price movements while trying to find an appropriate
buyer. This uncertainty can cause prices which market makers are willing to of-
fer to deviate significantly from appraisal values as steep discounts are charged to
cover the risks. The market making problem differs from fungible tokens in two
aspects. First, each token is considered to be unique albeit driven by certain lower-
dimensional systematic factors. Hence, it is difficult to create a layered orderbook
structure of market depth. Secondly, given the illiquidity there is a relatively long
expected duration between transactions. In this case, liquidity providers would
need to hold inventory on the other side of trades for a non-negligible horizon with
the objective of longer-duration alpha creation on the inventory portfolio rather
than market-neutral spreads.

We have developed a model for prices in market making context in terms of
embedded optionality of trading an NFT. In this regard we have considered the
value and time preference of executing a trade as a function of price volatility, cor-
relation, and liquidity. In order to develop the model for optionality of trading an
NFT, we have defined a model on the joint price dynamics of the NFT and its corre-
sponding floor. The price dynamics were decomposed into an intrinsic price diffu-
sion process and jump components relating to liquidity events. Liquidity episodes
tend to exhibit clustering due to contagion in both market fundamentals and senti-
ment where we have modeled the sentiment dynamics as a Hawkes process. This
enables us to produce jump clustering behavior that is appropriate for a comple-
mentary liquidity process. Using this price process, we have employed an option
pricing methodology to value the optionality for the market maker as a trade-off
between accepting the immediate floor or taking a chance for a higher price.

Our design contributes to the market microstructure literature in two ways.
Firstly, we provide a framework for market making in NFTs. Research within dig-
ital asset trading is still in an early stage, and to the best of our knowledge, this
is the first paper on market making in NFTs. Secondly, we provide a framework
for market making in illiquid and unique assets. There is limited research on the
topic and these insights could be used for trading in assets such as art, housing
and luxury items.
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2 Background

2.1 NFT Market

An NFT is a non-interchangeable unit of data stored on the blockchain. The main
difference relative to fungible crypto tokens is that NFTs represent a single, unique,
and indivisible crypto asset. The largest portion of NFT trading volume is concen-
trated in collections where numerous NFTs with heterogeneous characteristics are
released as part of an encompassing collection [19]. For example, popular collec-
tions include Crypto Punks and Azuki. The number of NFTs per collection varies,
for instance, the above-mentioned collections contain 10.000 NFTs. In collection-
based NFTs, holders receive a base utility from exposure to the collection and id-
iosyncratic utility captured by the specific features.

The NFT market has reached almost 25 billion USD in sales in 2021 from less
than 1 billion USD one year earlier. NFT trading has exponentially grown in the
past year, and further growth could be expected as NFTs have been rapidly gain-
ing adoption in numerous financial and non-financial use cases. The primary sale
of NFTs can happen through a direct sale of pre-minted NFTs from the creator
or in so-called mints where people mint tokens via a smart contract. Secondary
trading has been mainly performed on peer-to-peer exchanges. These exchanges
act like marketplaces where people can list and bid on each other’s NFTs. NFTs
have been mainly traded on centralized exchanges while decentralized exchanges
— which have been popular trading venues for fungible cryptocurrencies — have
just started making their way into the ecosystem.

Despite the growth in trading volume, NFTs remain considerably illiquid. For
example, analyzing NFT collections on OpenSea shows that 39 % of the NFTs have
never been sold after the mint and 92 % have only been sold three times or less. The
NFT market presents a low liquidity and high price volatility environment. This
illiquid and volatile nature of NFTs can present a challenge for market makers as
they face large inventory risk and high potential search costs.

2.2 Market Making in Illiquid Assets

One could view market making as a series of actions where an equilibrium is found
that balances supply and demand [13]. As argued by Dolgopolov [7], the crux of
market making entails the provision of liquidity in assets by committing own cap-
ital. Traditionally, market makers provide inventory and help determine prices by
matching demand and supply in an auction-like game. Market makers essentially
provide inventory and search cost reduction services for which a (risk-adjusted)
fee is charged in terms of bid-ask spreads.

Conventional market microstructure theory predicts that market makers re-
quire substantially lower prices when there are fewer buyers, longer holding times
and higher asset price volatility [12]. Market making can be relatively difficult in
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less liquid markets as traders have an incentive not to post orders as it would re-
veal information with little chance of any benefit relating to the no-trade theorem
of Milgram and Stokey [4]. In the case of illiquid assets market makers tend to
prefer to rather act like intermediaries who match demand and supply [7].

D’Arcy (2005) [1] argues that real estate service providers act as “market mak-
ers” in the housing market as they facilitate information sharing and reduce in-
formation costs. In this context one could view aggregators as ”market makers”
in the NFT market as they facilitate information across market places to help link
buyers and sellers. However, we would like to argue that market makers not only
facilitate information but directly facilitate liquidity. There have been numerous
researchers (e.g., Bayer et al. [3]) who empirically investigated real estate flipping
which could be considered as a form of market making. For example, Agarwal et
al. [2] show that real estate agents use their informational advantage and bargain-
ing power in order to buy at discounted prices. However, real estate agents would
rather cherry pick and use bargaining power over weak sellers which could hardly
be argued as systematic market making activity. Bayer et al. [3] argue the existence
of market making middlemen who purchase housing below market value with the
goal of reselling quickly. These types would possess strong ”deal picking” skills
and would buy from ”motivated” sellers in need of liquidity. Zillow — a tech com-
pany that created an online market place for real estate in the US — attempted to
introduce some form of market making within the real estate using pricing algo-
rithms. However, their pricing algorithms failed and Zillow had to shut down its
house flipping operations after steep losses. This is related to the aforementioned
argument that market makers would need to hold inventory for a non-negligible
horizon with an objective of longer-duration alpha creation on the inventory which
can be risky.

Lovo and Spaenjers [18] develop a model for trading in art auction markets
where they argue that traders take into account the expected resale value and the
value of the ”emotional dividend” while holding the art piece. Within the art mar-
ket, one could argue that the large network of individual dealer facilitates the role
of market making as art is bought and sold in the hope to generate profits. The lack
of research on market making models in art could be explained by the lack of data
availability, the relatively obscure nature of the market, and the difficulties in pric-
ing unique art pieces. Furthermore, there are various market imperfections such as
authentication of art works and proof of ownership which makes market making
difficult. Art dealers tend to provide the function of experts who authenticate the
art works which can be a time-intensive process.

3 NFT Market Making

The illiquid and volatile nature is not necessarily the biggest issue but the fact that
NFTs represent unique assets. As a result, it is difficult to create a layered order
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book structure as in other fungible assets. As previously discussed, an NFT will be
valued differently by various potential buyers depending on their private utility
function. The general value of the collection is roughly shared among participants
while the idiosyncratic value of the NFT could be valued differently. Market mak-
ers would be required to hold a volatile asset in their inventory with the risk of
significant downward price movements while trying to find an appropriate buyer.
Given the market making risks, liquidity providers would offer prices closer to
the floor than the appraisal price unless they expect the NFT to be desirable with
low potential search costs. This could help explain the observation by [15] that a
relatively large fraction of NFTs within a collection trade near the floor. There is a
limited literature on market making in unique assets and one could argue similar
issues in the art and real estate market due to the heterogeneous nature of these
assets.

The market making problem in NFTs differs from ”fungible” assets in two as-
pects. Firstly, each asset is considered to be unique albeit driven by certain lower-
dimensional features. Hence, there is no layered orderbook structure of market
depth. Secondly, because of the illiquidity there is a long expected duration be-
tween transactions. Liquidity providers would need to hold inventory on the
other side of the trades for a non-negligible and rolling horizon with the objec-
tive of longer-duration alpha creation on the inventory portfolio. This differs from
conventional market making models where market neutral positions tend to be
the norm. As a result, the market making framework would need to reflect these
realities.

Due to the uniqueness of NFTs there are high potential search costs to find an
appropriate buyer who is willing to pay a ”fair” price. The floor of a collection
represents the minimum price at which NFTs within the collection could be sold
while the price component in excess of the floor represents the idiosyncratic util-
ity of the NFT in question. The floor price could be considered as the liquid part
where there are few search costs to find willing buyers at this price. On the other
hand, the idiosyncratic feature-based pricing element is the more illiquid part with
high potential search costs to find appropriate buyers where one would need to
potentially accept a (considerable) liquidity discount in order to sell. Taking in-
spiration from ABBBBBB NFT (2022), one could conceptually view NFT liquidity
— in terms of search time and costs — as illustrated in figure 1. This is related to
Duffie, Gârleanu, and Pedersen [8] who show that higher search costs cause worse
prices in over-the-counter markets. Desirable NFTs — such as ones with popu-
lar or rare characteristics — tend to be significantly more liquid than average or
lower tier NFTs. Search costs are relatively low with desirable NFTs as it is easier
to find appropriate buyers willing to pay the potential price. In the case of unde-
sirable NFTs it is difficult to receive a fair feature-based price and one would need
to settle near the floor. It should be emphasized that these curves are a conceptual
representation based on discretionary and expert knowledge of the NFT market.
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Estimating these curves requires extensive listing and bidding data which is left as
an avenue for future research.

Figure 1: Price and Holding Period

4 Pricing Model for NFT Market Making

We have developed a model for fair prices in market making context where we
view the problem in terms of optionality of trading an NFT at either the floor or
taking a chance to sell at a higher price that is closer to the fair appraisal price.
In order to develop a model for embedded optionality of trading an NFT, we first
defined a model on the joint price dynamics of the NFT and its corresponding floor.
It should be emphasized that our approach applies to collection-based NFTs where
there are a number of heterogeneous NFTs within a collection. As argued by Oh,
Rosen and Zhang [19] the largest fraction of NFT trading volume is concentrated in
collections so the model would be applicable to the largest part of the NFT market.

4.1 Price Dynamics

Collection-based NFTs have significant exposure to the collection they are part
of. The collection could be seen as the ”family” an NFT belongs to where there
is strong systematic co-movement between different NFTs within that collection.
The floor price of a collection represents the lower bound at which NFTs within
the collection are traded. It can be argued to represent the market price of imme-
diate liquidity of any NFT within the collection and a measure for the base value
of the collection. The price in excess of the floor could be argued to represent the
idiosyncratic utility of the NFT. NFT prices can represent other elements outside
of the collection floor and the idiosyncratic feature-based component such as sys-
tematic factors influencing prices.
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The price dynamics can be decomposed into an intrinsic price diffusion pro-
cess and jump components attributed to liquidity events. The intrinsic price pro-
cess models the continuous diffusion of prices from conventional information dis-
semination and continuous price discovery in financial markets. This is comple-
mented with a jump process that models large liquidity events. Liquidity events
represent the arrival of large exogenous events that cause discontinuous price
jumps on thinly traded markets with fragmented liquidity. These may include
the arrival of unexpected macro or crypto-market-wide news such as regulatory
or monetary policy changes, cascading liquidations of large leveraged wallets,
sequence of collateral failures, protocol security breaches, momentum ignitions
through “pumps”, etc. The magnitude of consequent price movements are am-
plified under lower liquidity conditions. Since the continuous and discontinuous
components differ both in induced price action and causal mechanics, we elect to
separate the two, but combine the processes multiplicatively in the end to model
the complete price process.

Liquidity shocks often exhibit clustering effects which can be caused due to
common exposure to observable [6] and unobservable factors [9], as well as direct
contagion in market-wide events [10]. Market contagion dynamics can be modeled
as Hawkes processes which are self-exciting, by which the arrival of jumps further
increases the intensity and thus the probability of future jumps. This enables us
to produce feedback behavior that is appropriate for the complementary liquid-
ity process, which would not be possible via jump diffusion models based on, for
example, doubly stochastic Poisson processes alone. Self-exciting jump dynam-
ics permit both negative contagion as well as discontinuous positive momentum
ignition.

Consider a complete probability space (Ω,F , P) with respect to a complete and
right-continuous information filtration F = (Ft)t≥0. As previously mentioned,
we decompose the complete price process S(t) into an intrinsic process S̃(t) and
liquidity process L(t) in the form of

S(t) = S̃(t) · L(t) (1)

at time t. Let us assume there is a riskless yield r generating numeraire asset
(either USD with funding rate or ETH with staking yield depending on the vantage
point appropriately assumed for the collective liquidity provider economy). Let
the intrinsic price process S̃k(t) for a given NFT and the collection floor, denoted by
subscripts i and f respectively, be given by

S̃k(t) = Sk(0) exp
{(

r − 1
2

σ2
k

)
t + σkWk(t)

}
k = i, f (2)

where sigmak represents the volatility, and Wi(t) and W f (t) are correlated Wiener
processes with a correlation coefficient ρi f . Note that the overall multivariate cor-
relation matrix [P]ij can be governed by a richer factor structure of underlying
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feature vectors. However, for the pricing of a single NFT in the current exposi-
tion, we only require an estimate of the pairwise correlation between the NFT and
corresponding collection floor.

Now consider the sequences of stopping times defined on the probability space
(τj)j∈N, (τi,j)j∈N, (τf ,j)j∈N which generate the following nonexplosive counting
processes

N(t) =
∞

∑
j=1

Iτj≤t

Nk(t) =
∞

∑
j=1

Iτk,j≤t k = i, f
(3)

The non-subscripted N(t) counts the collection-wide liquidity event arrivals whereas
Nk(t), k = i, f represent idiosyncratic liquidity events. We model the overall liq-
uidity events for k = i, f to arrive either through market liquidity events or id-
iosyncratic liquidity events as

Nk,t = Nt + Nk,t k = i, f (4)

These processes can be characterized directly through their conditional arrival
rates or intensities λ. Following the work of Errais, Giesecke and Goldberg [10] we
propose dynamics in the form of

λ(t) = c + e−γt(λ(0)− c) +
∫ t

0
ηe−γsdN(s). (5)

With the reversion level set to the initial value c = λ(0) we have

λ(t) = λ(0) + η ∑
τj≤t

e−γ(t−τj)

λk(t) = λi(0) + ηi ∑
τk,j≤t

e−γi(t−τk,j) k = i, f
(6)

The counting processes of (3) exhibit self-exciting properties as their intensities
increase by η, ηk, k = i, f increments at each jump arrival. Since the arrival of an
event immediately increases the conditional arrival probability of its own process,
this creates a self reinforcing feedback loop which represents the empirical phe-
nomenon of (liquidity) event clusters. For instance, large liquidations can trigger
further liquidations or collateral chains can trigger cascading credit events. How-
ever, with the passage of time the environment eventually normalizes such that the
impact should be ephemeral over long enough horizons. It should be noted that
in the specification of (6), the impact of previous events decays exponentially. The
processes specified in (4), characterized by (6) are both self-exciting and mutually-
exciting via shared collection-wide process Nt. This construct permits analytical
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tractability while allowing liquidity co-jumps across the entire collection. Note
that in the special case of γ = 0 these are birth processes and δ = 0 they are regular
Poisson processes.

Finally in order to complete the specification, we must define what happens
upon liquidity event arrival — i.e. the distribution of price jumps at each event
time of Nk,t. For this, we assume that the price jumps follow a log-normal distri-
bution. More specifically, the amplitude of the price jumps at each arrival time of
Nk,t follow a log-normal distribution of log

(
1 + Zk,j

)
∼ N(mk, vk) where we fur-

ther denote µk = exp
(

mk +
1
2 v2

k

)
− 1. The intrinsic prices experience multiplica-

tive jumps of

Lk(t) = Ak(t)
Nk,t

∏
j=1

(
1 + Zk,j

)
k = i, f . (7)

Here Ak(t) is needed to counteract the ever-increasing tendency of the counting
process and can be derived from the compensator of the jump process Nk(t) by
which the Doob-Meyer decomposition guarantees that the compensated counting
process is a local martingale [14]. By Ito’s formula for semimartingales we have

Ak(t) = exp
{
− µk(λ(0) + λk(0))t +

Nt

∑
j=1

µkη

γ

(
e−γ(t−τj) − 1

)

+
Nk,t

∑
j=1

µkηk
γk

(
e−γk(t−τk,j) − 1

)}
k = i, f .

(8)

The complete price processes are finally expressed as multiplicative products of the
intrinsic process S̃k of (2) and the liquidity jumps arriving at Sk(t) = S̃k(t) · Lk(t)
or

Sk(t) = S̃k(t)Ak(t)
Nk,t

∏
j=1

(
1 + Zk,j

)
k = i, f . (9)

4.2 Pricing the Optionality of Exchange

The market maker’s decision problem of optimal price determination can be viewed
from the perspective of embedded optionality. For instance, from a seller’s per-
spective as shown in figure 1, a transaction can immediately happen at the floor or
one could wait for a potential price improvement that reflects the unique desirabil-
ity of the NFT. However, since both the market and idiosyncratic drivers of prices
are stochastic this has a cost which should reflect both duration and volatility.

The value of the optionality for the market maker can be represented as a time
and uncertainty dependent trade-off between accepting the immediate floor or tak-
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ing a chance for a higher price of ϕ where ϕ ≥ 1 at a future date:

V∗ = e−rTE
[(

Si(T)− ϕS f (T)
)+] (10)

The parameter ϕ becomes an investor or market maker preference parameter. For
instance, ϕ can be set as the current exponentially moving average of the theoreti-
cal price divided by the floor ϕ = S̄i

S f
or the market maker’s estimated multiple ac-

cording to internal forecasting models. Under the dynamics described in equation
(9), this value can be derived, point process pathwise-analytically, on the realized
paths of NT = n, Nk,T = nk, k = i, f in Black-Scholes like form.

Let X(t) = log
(
S f (t)

)
and Y(t) = log (Si(t))− log

(
S f (t)

)
. We have

X(t) = X(0) + l f T + σf W f (T) + ω f +

n+n f

∑
j=1

log
(
1 + Z f ,j

)
Y(t) = Y(0) + (li − l f )T + σiWi(T)− σf W f (T) + ωi − ω f

+

n+n f

∑
j=1

log
(
1 + Z f ,j

)
−

n+n f

∑
j=1

log
(
1 + Z f ,j

) (11)

where

ωk =
n

∑
j=1

µkη

γ

(
e−γ(t−τj) − 1

)
+

nk

∑
j=1

µiηk
γk

(
e−γk(t−τk,j) − 1

)
lk = r − µk(λ(0) + λk(0))−

1
2

σ2
k k = i, f

(12)

Since the sums of normal variables are also normal, X(T) ∼ N (Θ, Ψ), Y(T) ∼
N (Ξ, Π), and the covariance Cov (X(T)Y(T)) = σiσf ρi f T − σ2

f T − σ2
i T where

Θ = log
(
S f (0)

)
+ l f T + ω f + (n + n f )a f

Ξ = log (Si(0))− log
(
S f (0)

)
+ (li − l f )T + ωi − ω f + (n + ni)mi − (n + n f )m f

Π =
(

σ2
i + σ2

f

)
T + (n + ni)vi + (n + n f )v f − 2σiσf ρi f T

Ψ = σ2
f T + (n + n f )v f

(13)
Now we can normalize the expressions and write these as

X(T) = Θ +
√

Ψϵ f

Y(T) = Ξ +
√

Πϵi f
(14)

where the correlation between the standard normals ϵ f and ϵi f is given by

ξ =
σiσf ρi f T − σ2

f T − (n + n f )b f
√

Π · Ψ
(15)
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If Sk(0) > 0, k = i, f then Sk(t), k = i, f are almost surely positive processes by
(9). Hence,

E
[(

Si(T)− ϕS f (T)
)+]

= E

S f (T)

(
Si(T)
S f (T)

− ϕ

)+


= E
[
S f (T)

]
E

( S f (T)
E
[
S f (T)

] Si(T)
S f (T)

− ϕ

)+
 (16)

The second equality follows from the (14). Now we introduce the floor price Q f

measure define by the Radon-Nikodym derivative dQ f

dQ =
S f (t)

E[S f (t)]
under which we

can express the second expectation as E f
[(

Si(T)
S f (T)

− ϕ
)+]

. By (14) and (15) ϵi f ∼

N
(

ξ
√

Ψ, 1
)

under the Q f measure. Let ϵ ∼ N(0, 1) be a standard normal variable,

Z = exp
(

Ξ + ξ
√

Π · Ψ +
√

Πϵ
)

and further define

d− =
Ξ + ξ

√
Π · Ψ − log (ϕ)√

Π
d+ = d− +

√
Π

(17)

then

E f

( Si(T)
S f (T)

− ϕ

)+
 = E f

[
(Z − ϕ)+

]
= E f [Z · IZ≤ϕ

]
− ϕE f [IZ≥ϕ

]
= exp

(
Ξ + ξ

√
Π · Ψ +

1
2

Π
)

N(d+)− ϕN(d−).

(18)

By (14), we have E
[
S f (T)

]
= exp

(
Θ + 1

2 Ψ
)

and by substituting this in place of
the first expectation in (16) we arrive at the Black-Scholes style formulation of the
NFT item-floor exchange formulation under dynamic liquidity of

V∗ = A (BN(d1)− ϕN(d2)) (19)

where

A = exp
{
−rT + Θ +

1
2

Ψ
}

B = exp
{

Ξ + ξ
√

Π · Ψ +
1
2

Π
} (20)

Note that the analytical expression is conditional on the paths of the Hawkes
processes, hence must be computed as the sample mean across the simulated paths
using an Ogata [16, 21] type thinning algorithm.
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4.3 Discussion

The underlying NFT price dynamics specified in the previous section combines
intrinsic price diffusions with the impact of discontinuous liquidity events in a co-
herent and parsimonious model. Furthermore, the liquidity events are both self
and mutually-exciting, replicating the clustering of price shocks across time and
within collections that we empirically observe. This allows us to evaluate the mar-
ket maker’s choice realistically through the perspective of a specific NFT’s price
with respect to the collection floor and the joint dynamics therein. The additive
structure of the Hawkes process can be further expanded for multivariate NFT-
economy-wide (or “sector”-wide) models in the future. Constructing realistic yet
tractable multivariate dynamics would be beneficial for the NFT market-making
use case in which market makers will be required to hold large and diverse inven-
tories for relatively long holding periods.

The framework of viewing the market maker’s choice through the option spec-
ification of (10) elucidates the different trade-offs at play. The option greeks could
be intuitively used to examine the effect of changes in some base decision vari-
ables such as Delta (change in collection price), Theta (time), Gamma (effect of col-
lection price changes), Vega (price volatility), Rho (base cost of capital in crypto),
etc. The exchange ratio parameter ϕ can be seen as a parameter that represents the
market maker’s confidence in the unique value of the given NFT in comparison
to the collection floor. For instance, one market making strategy could be to use
the running average of realized transactions within certain cohorts or to have a
trait and rarity based inference model to estimate the appropriate near-the-money
ratio. This also interplays with time-preference as a shorter investment horizon
impacts the probability of a favorable outcome via theta. The pricing formula of
(19) also incorporates the elements such as the impact of correlations, idiosyncratic
vs. collection-wide liquidity shocks, etc. The marginal impact and intuition of the
parameter sensitivities, as well as rigorous and robust estimation strategies will be
left for future work.

The market making model could be used for market making in collection-based
NFTs. At the moment there is limited market making activity in NFTs and we pro-
vide a framework to think about liquidity provision in this segment. Improving
market making could improve trading conditions in a market with little price effi-
ciency and a relatively high degree of illiquidity. This could provide trading effi-
ciency gains, allocation improvements, decreased deadweight loss, and allow for
more efficient markets to develop within the NFT space. Market making activity is
fundamentally part of efficient asset markets and could almost be seen as the pro-
vision of a public good [7]. Automated market makers for NFTs (such as Caviar
AMM) could also apply the market making discount as derived from our model
to compute prices that are fair for liquidity providers to accept.
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4.4 Model Extensions

First of all, it should be noted that in this paper we have presented a structured
model how rational market makers could set quote prices. One could apply more
statistical or machine learning based models where one would try to estimate for
how much they expect to sell the NFT, and set a price (adjusted for a risk spread)
based on this. The advantage of our model is that it provides a structured frame-
work on how to view market making, and allows to intuitively tune the parame-
ters.

It should be noted that we did not include a risk premium in this exercise.
In our model we assumed a price that market makers would be willing to im-
mediately bid in the market based on price expectations. One could assume that
market makers would demand a certain risk premium for taking this intertempo-
ral risk on his books. In expectation, over many trades, this risk premium would
approximate the profit margin from market making activity. This risk premium
would need to be empirically estimated, and could be constructed as a function of
numerous variable representing the risk that the market maker is taking such as
liquidity, expected holding time, price volatility, etc.

We have assumed that the floor price is the minimum price that one could get in
the market. However, NFT market places (such as Blur) have increasingly allowed
for bidding on NFTs. In this case one could take the bids of similar NFTs within
the same cluster to compute a ”bid floor”. This bid floor could be assumed to
be the minimum that you could get in the market for the NFT in question. For
this exercise you would cluster NFTs within a collection together where the NFTs
within a similar cluster could be assumed to be quasi fungible. The dynamics of
the model would similar except that you would swap the floor price variable with
the bid floor price. We conceptionally illustrate this by figure 2 below.

Figure 2: Price and Holding Period

Finally, the framework could be extended to non-collection NFTs in the case
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that one could generate clusters of NFTs with systematic co-movements. Funda-
mentally, a collection could be viewed as a cluster of NFTs with strong system-
atic co-movement to a certain base line (i.e. the collection floor). For example,
one could use factor models to structure NFTs in clusters according to a variety
of characteristics that would capture systemic co-movements — a cluster of small
size NFTs within a certain category, theme and artist network.

5 Conclusion

This study discussed a framework for market making in NFTs. The NFT market
represents a low liquidity and high price volatility environment with long poten-
tial holding times. This uncertainty about finding appropriate buyers in a rela-
tively short time span can cause transaction prices to deviate significantly from
the “fair” appraisal price as discounts are charged to cover market making risks.
The market making problem differs from fungible cryptocurrencies as there is no
layered orderbook structure of market depth and market makers would need to
hold inventory on the other side of the trades for a non-negligible horizon. We
have developed a model for market making prices through the lens of optional-
ity of trading an NFT at either the floor or a price closer to the appraisal value.
In order to develop the model for embedded optionality of trading an NFT, we
first defined a model on the joint price dynamics of the NFT and its corresponding
floor. The price dynamics were decomposed into a fundamental price process and
jump components relating to liquidity events. The dynamics of the jumps were
modeled as Hawkes processes which would enable us to produce jump clustering
behavior appropriate for the complementary liquidity process.

Research within digital asset trading is still in an early stage, and we con-
tribute to the literature by providing a framework to think about market making in
NFTs. Future research could contribute by further building upon our framework
or proposing different conceptual framework to think about the market making
problem. Our approach applies to collection-based NFTs where there are a number
of heterogeneous NFTs within an overlapping collection. One could potentially ex-
pand the market making model for non-collection NFTs in the case that one could
generate clusters of NFTs with systematic co-movements. Furthermore, future re-
search could investigate how this conceptual framework or the use of NFTs could
be used for art and real estate trading.
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