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Abstract

This study discusses pricing of power perpetual futures where it expands on the
existing framework that is based on deterministic volatility. Perpetual futures have
been initially suggested by Shiller (1993) to help create derivatives markets in illiquid
assets. Whereas they failed to gain traction in traditional asset markets, perpetual fu-
tures have been heavily used in crypto trading where they are the main derivatives
instruments. Power perpetual futures have been recently introduced as a leveraged
version of perpetual futures with a more asymmetric payoff structure. Traditionally
people have assumed deterministic volatility in its pricing, and in this paper we intro-
duce power perpetual futures pricing with stochastic volatility.

1 Introduction

Perpetual futures have been first suggested by Shiller (1993) to create derivatives mar-
kets in housing indices. Perpetual futures are cash settled and as the name suggests con-
sist of a futures contract with no expiration date. The advantage of this is no rollovers
and traders having to simply pay cash settled funding payments at frequent time inter-
vals. They are straightforward to use with an easier user experience and provide a sim-
pler solution for leveraged trading through the use of auto liquidations. As discussed by
White et al. (2021a) perpetual derivatives help with liquidity fragmentation and rolling
over positions. Mainly in the case of smaller illiquid markets perpetual futures can offer
several advantages over traditional futures contracts including more flexibility, ease of
use, and improved liquidity as they can be traded continuously without having to man-
age different expiry dates or rollovers. The main use cases of perpetual futures within
traditional finance consist of commodity and energy derivatives where they have gained
popularity in recent years. Perpetual futures have been considerably more popular out-
side of traditional finance where they have been extensively used within crypto markets.

*1 HashCurve
†2 HashCurve, UCL Centre for Blockchain Technologies
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Some estimates — such as by Carnegie Mellon University CyLab researchers [1] — sug-
gest that volume of crypto derivatives (dominated by perpetual futures) exceeds spot
trading by approximately a factor of five.

Power perpetual futures —- which were initially introduced by Open and Paradigm
Research [3] — represent a perpetual futures contract that is indexed to a power of the
price index that the perp is tracking. White et al. [3] argues that power perpetual futures
are endowed with positive convexity (or positive Gamma is option pricing language)
and are thus more than a leveraged perpetual futures. In this construct convexity is
introduced which creates an asymmetric payoff profile. Power perpetuals would thus
trade at a premium of the index (otherwise there would be an arbitrage opportunity).
Power perpetuals have different applications in crypto — such as the creation of delta
neutral vaults and hedges for LPs in automated market makers — and are starting to
surface in NFTs where HashCurve has been working on implementing power perpetual
futures to replicate NFT exposures. Power perpetual futures are mainly interesting for
”options like” non-linear asymmetric payoff structures, and can help to generate liquid
markets for these instruments as it concentrates liquidity better. In the case of options
there are different strikes and maturities to handle which can scatter liquidity, and the
exercise and roll-over can be practically difficult on-chain — this is especially important
for non-major crypto assets with less active market making activity. White et al. [5] dis-
cuss everlasting options which work similarly to perpetual futures but in options which
solves for the maturity fragmentation and need to roll over. However, it still requires to
choose a strike price and thus concentrates liquidity in strikes which is, again, not ideal
for lower liquidity crypto assets. Having protection over a fixed horizon is the main
selling point of options, but if there is not enough liquidity to populate at different ma-
turities and strikes market participants can be argued to be better off with concentrating
the liquidity and offering nonlinear payoffs through power perpetual futures.

In this paper we expand the pricing model of power perpetual futures of White et al.
[3] with a stochastic volatility component. The main disadvantage of the original con-
stant volatility construct is that it assumes that the volatility deterministic and constant.
More specifically, it does not account for the stochastic variability coming from natural
volatility dynamics which are impacted by overall market sentiment and momentum.
Especially in market with a limited range of traded derivatives — such as cryptocur-
rencies — there is a significant proportion of unspanned volatility. Furthermore, the
former formulation does not account for the correlation (leverage effect) between the
spot and volatility processes and subsequently differing sensitivities at different intra-
period “moneyness”. While volatility is stochastic, assuming deterministic volatility
would cause significant mispricing in power perpetuals of non-major crypto assets as
the spot market of these assets is plagued by volatile behavior, volatility clustering, liq-
uidity events, etc. In most use cases where perpetual futures are used there is no option
surface to back out the implied volatility. In most cases (and especially during relatively
low volatility periods such as during the time of publication of this paper) it would lead
to an underestimation of the integrated variance. These assumptions will play less of
a prominent role as market liquidity develops and the implied volatilities become di-
rectly observable. These considerations are especially important for perpetual futures
in less developed or more illiquid markets and markets at ”inception” where there is
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limited historic data availability – i.e. considerations for which perpetual futures have
been initially developed.

By extending the power perpetual futures pricing model to account for stochastic
volatility, we contribute to the growing body of literature on innovative financial instru-
ments in the burgeoning decentralized finance landscape. Our research endeavors to
provide market participants with a more reliable and sophisticated tool for managing
risk and optimizing their investment strategies in the rapidly evolving and increasingly
complex world of digital assets.

2 Derivation of Pricing Model for Power Perpetual Fu-
tures

In this section we discuss pricing of power perpetual futures. We start with the con-
ventional pricing mechanism with deterministic volatility, and extend it with stochastic
volatility. Following [3], the standard pricing formula for a power perpetual with power
p is given as

Vp = Sp · 1

2 exp(− f p−1
2 (2r + pv2))− 1

(1)

where S is the current spot price, r the risk-free rate, v the annualized volatility, and f
the funding period in years.

The main disadvantage of this construct is that it assumes that the volatility deter-
ministic and thus rather constant. More specifically, it does not account for the stochastic
variability coming from unspanned volatility dynamics, which are impacted by overall
market sentiment and momentum. Especially in market with a limited range of traded
derivatives — such as cryptocurrencies — there is a significant proportion of unspanned
volatility. Furthermore, the former formulation does not account for the correlation
(leverage effect) between the spot and volatility processes and subsequently differing
sensitivities at different intra-period “moneyness”. Hence, in a departure from standard
Black-Scholes assumptions, these additional sources of stochasticity must be accounted
for, especially in a low liquidity environment. Note that especially at inception, mar-
kets do not have liquidity and some assumptions on price dynamics are required to
guide pricing and price discovery until interpolation of vanilla market prices are possi-
ble. These assumptions will play less of a prominent role as market liquidity develops
and the implied volatilities become directly observable. These considerations are es-
pecially important for perpetual futures in less developed markets such as crypto and
NFTs – i.e. considerations for which perpetual futures have been initially developed.

Let the joint spot NFT price St and volatility vt dynamics be given by (Schobel-Zhu
model of [4]):

dSt = rStdt + vtStdWS
t

dvt = κ(θ − vt)dt + σvdWv
t

(2)

where WS
t , Wv

t are standard Wiener processes with correlation coefficient < dWS
t , dWv

t >=
ρ. κ controls the reversion speed whereas θ determines long-term average level. σv
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controls the volatility of volatility. For comparison, this reduces to the popular Hes-
ton model which introduces stochastic volatility to a Black-Scholes type options pricing
model. More specifically, it uses Cox-Ingersoll-Ross (CIR) dynamics to the instantaneous
variance process, under the following parameter restrictions:

κ =
1
2

κh

ξ =
1
2

σh

θ = 0

θh =
σ2

κh
.

(3)

Under these assumptions, the expiring futures contract price F(t) is given as the fol-
lowing product

F(t) = Sp · D(t) · E(t) (4)

where the correlation adjusted discount factor D(t) is given by

D(t) = exp
(

p
(

rt − ρp
2σ2

v

(
v2 + v2t

)))
(5)

and the exponential transform factor E(t) representing the risk-neutral probability of (8)
is given by and decomposes to

E(t) = A(t) exp
(

B(t)v2 + C(t)v
)

(6)

with

A(t) =
1√

G(γ1, γ2)
· exp

(
κt
2
+

κ2θ2γ2
1 − γ2

3

2ξ2γ3
1

(
sinh(γ1t)
G(γ1, γ2)

− γ1t
)

+
(κθγ1 − γ2γ3) γ3

σ2
v γ3

1

(
cosh(γ1t − 1)

G(γ1, γ2)

) (7)

B(t) =
1

2σ2
v

(
κ − γ1H(γ1, γ2)

G(γ1, γ2)

)
(8)

C(t) =
1

2σ2
v

(
κθγ1 − γ2γ3 + γ3H(γ1, γ2)

G(γ1, γ2)
− κθγ1

)
(9)

Here the constant coefficients are

γ1 =

√
κ2 + 2σ2

v p
(

1 − p(1 − ρ2)

2
− pρκθ

σv

)
γ2 =

κ − 2σ2
v (pρκθ)

σvγ1

γ3 = κ2θ − σv pρ

2

(10)
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and hyperbolic functions given by

G(γ1, γ2) = cosh(γ1t) + γ2 sinh(γ1t)
H(γ1, γ2) = sinh(γ1t) + γ2 cosh(γ1t)

(11)

The pricing formula of (1) should then be modified to

Vv
p =

Sp

2F(− f )− 1
(12)

under the convergence region of
F( f ) < 2. (13)

where we can see that the leverage effect parameter ρ and vol of vol σv play a prominent
role in the formulation.

The derivation of the above result could be done by applying the Ito’s formula to
f (x) = x2 and the dynamics given in (2) we have

dv2
t = 2κ

(
σ2

v
2κ

+ θvt − v2
t

)
dt + 2σvvtdWt. (14)

The tower property gives us

E[Sp
t ] = Sp

t eprtE
[

exp
{

p
2

(
p(1 − ρ2)− 1

) ∫ t

0
v2

s ds + pρ
∫ t

o
vsdWs

}]
(15)

E[Sp
t ] = Sp

t exp
{

prt − pρ

2σv

(
v2 + σ2

v t
)}

·

E
[

exp
{
−
∫ t

o

(
(1 − p(1 − ρ2)v2

s +

(
pρκθ

2

)
vs

)
ds +

(
σv pρ

2σv

)
v2

t

}] (16)

The computation of the last risk-neutral transform term follows by rewriting the
terms of the orthogonalized Wiener processes W̄t = ρWt +

√
1 − ρ2W⊥

t and then from
the derivation in [4] of the closed forms of the transform function

f (ϕ) = E [exp [−rt − v + (1 + iϕ)vT]] . (17)

It should be noted that by making the volatility component stochastic we would
introduce procyclical volatility which would have a net increase in the convexity of the
instrument.

Finally, the interest rates, while also stochastic, are directly observable and to be re-
calibrated daily, hence remain treated as constant.
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3 Recap: Pricing Model for Power Perpetual Futures

Under the Schobel-Zhu model [4] for stochastic volatility, the pricing formula of a power
perpetual future contract with power p becomes

Vv
p =

Sp

2F(− f )− 1
(18)

where S stands for the spot price, f the funding period, and F(t) the expiring futures
contract which is given by

F(t) = Sp · D(t) · E(t) (19)

with discount term D(t)

D(t) = exp
(

p
(

rt − ρp
2σ2

v

(
v2 + v2t

)))
(20)

and exponential transform term E(t)

E(t) = A(t) exp
(

B(t)v2 + C(t)v
)

(21)

where

A(t) =
1√

G(γ1, γ2)
· exp

(
κt
2
+

κ2θ2γ2
1 − γ2

3

2ξ2γ3
1

(
sinh(γ1t)
G(γ1, γ2)

− γ1t
)

+
(κθγ1 − γ2γ3) γ3

σ2
v γ3

1

(
cosh(γ1t − 1)

G(γ1, γ2)

) (22)

B(t) =
1

2σ2
v

(
κ − γ1H(γ1, γ2)

G(γ1, γ2)

)
(23)

C(t) =
1

2σ2
v

(
κθγ1 − γ2γ3 + γ3H(γ1, γ2)

G(γ1, γ2)
− κθγ1

)
(24)

with constant coefficients

γ1 =

√
κ2 + 2σ2

v p
(

1 − p(1 − ρ2)

2
− pρκθ

σv

)
γ2 =

κ − 2σ2
v (pρκθ)

σvγ1

γ3 = κ2θ − σv pρ

2

(25)

and hyperbolic functions

G(γ1, γ2) = cosh(γ1t) + γ2 sinh(γ1t)
H(γ1, γ2) = sinh(γ1t) + γ2 cosh(γ1t)

(26)
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4 Conclusion

This paper attempted to provide a discussion on the pricing of power perpetual fu-
tures. By incorporating a stochastic volatility component into the pricing model, we
have addressed the limitations of the original model proposed by White et al. [3], which
assumed constant volatility and neglected the stochastic variability inherent in market
dynamics. Our refined model offers a more robust framework for pricing power perpet-
ual futures, particularly in less liquid markets with limited historical data. Ultimately,
our research contributes to the ongoing development of more sophisticated tools for
market participants to effectively manage risk and optimize investment strategies in the
digital asset space. As the digital assets landscape continues to evolve, we anticipate
that further refinements and extensions to our proposed model will be necessary to ac-
commodate new market developments and emerging risks.
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[4] Schöbel, R. and Zhu, J., 1999. Stochastic volatility with an Ornstein–Uhlenbeck pro-
cess: an extension. Review of Finance, 3(1), pp.23-46.

[5] White, et al. 2021. Everlasting Options. Paradigm website.

7


