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Abstract

AMMs represent a class of decentralized exchange mechanisms that rely on
a fixed mathematical formula to price assets. Popular AMM protocols utilize
a constant function approach which is deterministic in design. However, these
designs are plagued with issues such as impermanent loss, slippage costs, and
market risk incomputability. More specifically, the design allows professional
arbitrage traders to siphon off value from liquidity providers. We would like
to make the case for the development of a new class of AMM designs based on
stochastic pricing that would dynamically adjust to market information. The
stochastic design would function like a profit maximizing market maker which
we could solve through optimal control theory.

1 Introduction

Exchanges within the decentralized finance (DeFi) ecosystem have mainly utilized
automated market maker (AMM) designs to facilitate trades. As of the moment of
writing AMMs handle approximately 15% of trading volume in crypto currencies
with an approximate trading volume of $1 trillion in. AMMs represent a class of
decentralized exchange mechanisms that rely on a fixed mathematical formula to
price assets. Liquidity pools are created for a pair or basket of assets where trades
are made against this pool according to a pre-specified function. Currently popu-
lar AMM protocols utilize a constant function approach which is deterministic in
design. As a result of this design, we argue that they are plagued with issues such
as deterministic slippage cost, market risk incomputability, and impermanent loss.
These issues result in a relatively high price impact of trades for users and rela-
tively high fees to compensate liquidity providers for the associated risks. More
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specifically, the design allows arbitrageurs to siphon off value from traders and
liquidity providers in these AMM protocols.

In this article we would like to make the case for an AMM design using stochas-
tic bonding curves. In this case the pricing would be dynamic based on market
circumstances according to a profit maximizing market maker. Under certain as-
sumptions, the solution can be approximated in tractable form. In this construct
one is essentially solving for an optimal control problem as one is deciding on the
market maker’s optimal actions in terms of his profit and loss statement. This de-
sign would help to mitigate various problems in current AMM mechanisms such
as decreasing price impact of trades, more efficient use of provided capital, and
decreased impermanent loss for liquidity providers.

We discuss various implementation considerations and possible design choices.
One major protocol design consideration is the specific use case of the AMM. It
should be emphasized that in this paper we present the general case for stochastic
AMMs where there are numerous design considerations — both in the stochastic
model and the protocol — based on the use case. AMMs have been used to swap
tokens, market make perpetual futures, set rates derivatives, etc. We present a gen-
eral case where the model would need to be tuned for the specific use case. This is
the first paper in the HashCurve series on Stochastic AMMs where HashCurve [20]
has solved for a stochastic AMM for perpetual futures. This paper contributes to
the growing body of literature on AMMs and more generally on the use of bonding
curves in DeFi. We propose a novel approach to bonding curve by making them
stochastic which introduces more dynamic pricing on market developments.

2 Background on AMMs

Exchanges within the DeFi ecosystem have mainly utilized AMM designs to fa-
cilitate trades. AMM protocols allow traders to swap assets against the liquidity
pool which is a smart contract holding the assets in question with specific rules to
deposit or withdraw assets. Liquidity providers deposit the relevant assets in the
liquidity pools and receive a fee for this service. When people swap assets with the
protocol they are trading against a pool of liquidity provided by LPs and managed
by the AMM smart contract.

This is largely in contrast to the traditional mechanism in which investors trade
against a specific counterparty on a (centralized) exchange. In this setup investors
can trade assets without the need of a centralized intermediary as it constitutes
a smart contract on the distributed ledger or a system of custody. The task of
the AMM is to adjust prices to demand and supply information from market par-
ticipants. Instead of matching buy and sell orders, AMMs determine asset price
algorithmically through a bonding function. This bonding function allows the ex-
change rates to move along predefined trajectories which are conditioned upon
the quantities of available assets. It is important to note that AMMs do not update
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their prices based on new information, and that price efficiency is de facto obtained
through arbitrage activity.

AMMs were initially developed for information aggregation for markets where
payoffs depend on a specific future state such as prediction markets [4]. Various
formulations of automated market makers have been proposed, such as market
scoring rules, constant-utility market maker and constant function market maker
[1]. Constant function market makers (CFMMs) have been the first class of AMMs
to be specifically applied to financial markets while other designs have been rather
used in applications such as prediction markets. They were used to construct DEXs
for crypto and constitute the most popular AMM construct in DeFi [4]. The bond-
ing curve of these AMMs constitutes a constant function where the combined asset
reserves of trading pairs must be kept constant.

Existing bonding curve designs in this category include constant product mar-
ket maker, constant sum market maker, constant mean market maker or hybrid
versions consisting of a combination of the aforementioned ones. The most popu-
lar CFMM has been the constant product design where the product of the reserves
of the assets within the liquidity pool has to be constant. It is important to note
that CFMMs are deterministic in the design of their bonding curve. Popular AMM
protocols by trading volume – such as Uniswap, Sushiswap, Balancer, Curve, etc.
– are based on a constant function bonding curve. We would like to refer to Xu et
al. [34] for an extensive overview and discussion of existing AMM designs.

Finally, AMMs have been used for numerous other use cases within the DeFi
ecosystem. The AMM construct has been mainly popularized in token swap pro-
tocols, but has been adapted to several DeFi applications such as crypto options
(e.g., Panoptic), crypto futures (e.g., Perpetual Protocol), rate swaps (e.g., Voltz),
and NFT exchanges (e.g., Caviar). It should be noted that in the case of deriva-
tives, a virtual AMM (vAMM) model has been applied which is slightly different
to the conventional AMM as users trade against a pool where they have to store
collateral in the smart contract based vault. There are no liquidity providers in this
case as the liquidity comes from the vault that is funded by traders. It is virtual
in the sense that there is no proper asset pool backing the counterparty risk and it
is undercollateralized. The concepts discussed in this paper could be applied —
although slightly differently — to the vAMM construct as well as it functions as an
automated market where the pricing depends on bonding curves.

3 AMM Design Weaknesses

Angeris and Chitra [2] find that under sufficient conditions and under fairly gen-
eral assumptions, agents who interact with constant function market makers are
incentivized to correctly report the price of an asset in a computationally efficient
way. They provide sufficient conditions for these CFMMs to be well-behaved, in
the sense that agents are incentivized to correctly report asset prices and can never
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drain the assets of the CFMM by only trading with the given CFMM. The CFMM
constitutes thus a sufficient functioning mechanism for (decentralized) trading
purposes. There are, however, a few core problems including deterministic slip-
page costs, impermanent loss for liquidity providers, and improper accounting
of market risk. These problems result in higher price impact of trades and in-
creased fees (to compensate liquidity providers for the risk). More specifically, the
problems contribute to the siphoning of value from AMM traders and liquidity
providers to arbitrageurs.

The primary risk of liquidity providers is impermanent loss (IL) which con-
stitutes the difference in value over time between depositing tokens in an AMM
versus simply holding those assets. This loss occurs when the market-wide price
of tokens inside an AMM diverges in any direction. Since AMMs do not automati-
cally adjust their exchange rates, an arbitrageur is required to buy the underpriced
assets or sell the overpriced assets until the prices offered by the AMM match the
market-wide price of external markets. The profit extracted by arbitrageurs is si-
phoned from the pockets of liquidity providers, creating a loss. LP positions in
current AMM designs are de facto short volatility investments. Current AMM
designs compensate liquidity providers for this risk of impermanent loss by rela-
tively high fees. However, Loesh et al. [25] find that most passive LPs in Uniswap
– except for professionally active “flash LPs” who provide intra-block liquidity
– lost money relative to just holding the asset due to impermanent loss. Imple-
menting range orders only partially solves this problem as the impermanent loss
is just capped at the lower end of the range. Numerous others such as 0xfbifemboy
[?], thiccythot and charliemktplace have performed analysis on Uniswap LPs and
found that they were losing money.

The price, which is determined by the bonding curve, follows a determinis-
tic function and as a result slippage costs follow a deterministic function as well.
Prices are a (constant) function of the amount of tokens and are thus relatively
deterministically predictable based on the inventories. From the lack of dynamic
price adjustments AMMs could be seen as rather “static”. This deterministic slip-
page leads to a deadweight loss that arbitrageurs can capture at the expense of
users [13]. This deterministic slippage cost could also lead to front-running and
miner extractable value [12]. Furthermore, conventional AMM designs do not
properly account for market risk as price discovery happens in a rather naive way.
AMM designs de facto assume price arbitrage to make AMM prices efficient. More
specifically, the price discovery depends on cross-exchange arbitrage rather than a
pricing oracle for reference prices. The market risk is paid by the users and liquid-
ity providers and there is no proper computation of market risk within the pricing
of the AMM mechanism. It should be noted that this market risk (incomputability)
creates a hedging difficulty.

Finally, the vAMM construct inherits similar weaknesses as a result from its
deterministic bonding curve design. Some have argued that due to path inde-
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pendence, vaults have enough collateral to renumerate traders. However, this as-
sumes that undercollateralized positions would be liquidated on time before losing
money which is not always the case during market volatility. Because of this un-
dercollateralization most vAMMs have an insurance pool to pay for these losses.
You could argue that the vAMM is a victim of adverse selection by traders in this
case. The vAMM inherits the same impermanent loss as the conventional AMM
construct only the traders would bear the costs instead of LPs.

4 Why Stochastically Dynamic AMMs?

AMMs have been a popular trading venue as they have the advantage of decen-
tralization and continuous liquidity. Traditionally market makers provide inven-
tory and help determine prices by matching supply and demand in an auction-like
game. In AMMs, liquidity providers supply the asset inventory and the prices are
determined by the pricing algorithm. The advantage of this is that users obtain
immediate liquidity without having to find an exchange counterparty, whereas
liquidity providers receive fees for this service. AMMs allow for an exchange to
occur immediately which could be important for low liquidity assets. This makes
the AMM design interesting for relatively new protocols to launch crypto tokens
while allowing for a simple trading environment without the need of active mar-
ket makers to provide liquidity. Traders have an disincentive to post orders in thin
markets as they would reveal information with little benefit which relates to the
no-trade theorem of Milgram and Stokey [11].

You could view market making as a series of actions where an equilibrium is
found that balances supply and demand [15]. The rules of the auction are fixed by
the exchange, and in the case of AMMs these rules are executed by a smart con-
tract. Although there are some issues in current AMM designs, tools within Web3
provide an opportunity for built-in mechanism design within smart contracts. One
can argue that the biggest innovation of smart contracts was the ability to enforce
design mechanisms and thus directly implement market design. The goal of mar-
ket design is to help reduce some of the negative externalities and inefficiencies
preventing markets from achieving efficient first best outcomes [22]. As argued by
Robinson and Konstantopoulos [28] Ethereum is a dark forest as it is an adversar-
ial environment where code is law and weak designs are exploited. We argue that
you could directly implement more advanced mechanism design considerations
through smart contracts, and thus solve the current problems in AMMs through
old-fashioned mechanism design.

To understand how a stochastic design could help with some of the problems
in AMMs, we would need to take a closer look at impermanent loss. Milionis et al.
[26] define impermanent loss in different ways: as cost of commitment for giving
up future optionality, as the cost of arbitrage against the pool, and as an infor-
mation cost due to the unavailability of correct market prices. For simplicity, we
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could view impermanent loss as the loss of liquidity providers because external ar-
bitrageurs harness gamma convexity gains on every round trip in a self-financed
arbitrage strategy against the AMM. It should be noted that the gains of external
arbitrageurs are stochastic in this case because different paths ending up at the
same spot go through different realized volatility. In a limit order book market
makers would dynamically adjusts their hedge portfolio for a given percentage
move in the spot and harnesses the cash gamma. AMMs have generally failed in
protecting users from toxic order flow of arbitrageurs where especially unsophis-
ticated users are taken advantage of. The evidence tends to show that passive LPs
have received the short end of the stick. As argued by Cohen (2022), providing
ambient liquidity ( liquidity that is not very actively managed) on volatile tokens
is a negative expected value strategy in AMMs.

We would argue that the AMM mechanism would need to manage the posi-
tions while allowing LPs to provide passive ambient liquidity. You could apply
a stochastic framework in an optimal control problem that decides on the mar-
ket maker’s optimal actions in terms of quoting prices. This way the effective
bonding curve would be more dynamic on market circumstances. In this con-
struct one is essentially solving for an optimal control problem as one is deciding
on the market maker’s optimal actions in terms of his expected PnL, under certain
risk constraints. This design would allow for passive LP participation where the
liquidity is managed by the AMM protocol. A stochastic design tackles the previ-
ously discussed problems in AMMs. The impermanent loss for liquidity providers
is solved through the stochastic mechanism that actively manages LP positions.
The slippage costs adjust by order size and actions like front-running of trades can
be mitigated. Market risk is taken into account in the market oracle based pric-
ing mechanism as prevailing market conditions such as volatility impact the MM
behavior. Stochastic bonding curves can improve price discovery by allowing the
market to adapt to changes in supply and demand in a more responsive way.

5 Stochastic Models for Optimal Market Maker Be-
havior

One could construct a stochastic framework to derive a solution that describes op-
timal behavior of a market maker. As aforementioned, one would be solving an
optimal control problem in deciding the market maker’s optimal actions or poli-
cies. This is similar to the work of Chitra et al. [12] who discuss DeFi mechanisms
from an optimal control point of view through a stochastic model. The market
maker aims to maximize his expected period profit-and-loss (PnL) subject to var-
ious (risk) constraints. There are other approaches to this problem such as one
implemented by Swaap Labs [5] where they have designed a constant geometric
AMM which embeds a stochastic spread mechanism. We would argue, however,
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that one needs to incorporate a framework that solves for optimal market mak-
ing behavior. There is substantial previous work on stochastic models for optimal
market making behavior including the seminal paper of [3]. Other authors have
extended the model to incorporate inventory constraints ([17]), directional alpha
views ([14]), mutually exciting order arrivals ([32], [17]), and regime switching
([24]). These frameworks can be applied to derive optimal market making behav-
ior in AMM protocol designs.

We would first need to define the price dynamics of the spot process where you
would need to assume a distribution which allows to construct a stochastic process
with tunable moments. For example, Kim et al. [19] in HashCurve protcol assume
that the joint price and volatility dynamics are given by a Schobel-Zhu model. In
addition to the price dynamics we need to specify the dynamics of order arrivals.
For example, Kim et al. [19] in HashCurve protocol use the setup of [3] and [?]
with two independent Poisson processes N± for bids and asks, with intensities λ±

respectively. This model operates under the simplifying assumptions of no direct
(self and mutually exciting) feedback of orders on the price as addressed in [9] or
[?]. However, the impact of orders, acceleration, momentum, and imbalances can
be expressed indirectly through αt and the stochastic volatility enables volatility
clustering. For order arrival dynamics Kim et al. [19] follow the classical set up
as in [?]. The market maker controls her ask and bid quotes, p+(t) and p−(t)
which can be expressed as non-negative spreads, δ+(t) = p+(t)−S(t) and δ−(t) =
S(t)− p−(t). They assume fill rates of the form e−γ±

t δ±t . Implicitly the alpha process
depends on all market variables including order arrivals α = A(t, St, N+

t , N−
t ). The

inventory of the market maker is given by

Qt = N−
t − N+

t (1)

while the market maker’s cash evolves by

dXt = p+t dN+
t − p−t dN−

t

= (St + δ+t )dN+
t − (St − δ−t )dN−

t .
(2)

Finally you would need to define the market maker’s utility function in terms
of his PnL. The market maker’s goal would be to maximize his utility function
given cash Xt, inventory qt, and price process St, U(XT, ST; qT) (and potentially
other relevant variables). For example, Kim et al. [19] in HashCurve protcol as-
sume linear utility over horizon T with quadratic inventory penalization which
would give

U(XT, ST, QT) = XT + QTST − ηQ2
T (3)
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where η ≥ 0 represents the risk-aversion parameter regarding residual inven-
tory. In this formulation the market maker wishes to maximize his MtM wealth,
but is penalized for carrying over inventory. The associated value function would
be

v(t, x, s, q) = Et,x,s,q

[
X(T) + Q(T)S(T)− ηQ2(T)

]
(4)

The utility function can take on other forms (monotonic in wealth and con-
cave). This would represent the market maker’s problem which you would like
to optimize where you could use stochastic optimization methods. Stochastic opti-
mization deals with the challenge of finding optimal decisions in dynamic systems
affected by random noise. Such systems are often modeled by stochastic differen-
tial equations (SDEs) or controlled stochastic processes. A central tenet of optimal
control theory is the use of optimization techniques to determine the control input
that minimizes or maximizes a certain performance criterion, typically expressed
as a cost or utility function. An optimal control problems typically involve a dy-
namic system, which can be described by a state equation and a control input. The
objective of the problem is to find the control input that optimizes a certain per-
formance criterion, such as minimizing the cost of operation or maximizing the
system’s efficiency. Mathematically, an optimal control problem can be formulated
as follows: Given a dynamic system described by the state equation:

dx(t)
dt

= f (x(t), u(t), t), (5)

where x(t) is the state vector, u(t) is the control input, and f is a function de-
scribing the system’s dynamics. The goal is to find a control u∗(t) = (δ−, δ+) that
maximizes (or minimizes depending on orientation of objective function) a perfor-
mance criterion J, given by an integral:

J[u] =
∫ T

t0

g(x(t), u(t), t, x, q)dt + h(x(T), x, q), (6)

where g is the running cost, h is the terminal cost, and T is the horizon.
The value function represents the expected cumulative cost or reward from

following an optimal control policy, given the current state of the system. In opti-
mal control theory, these can be solved by deriving the Hamilton-Jacobi-Bellman
(HJB) equations, which are partial differential equations (PDE) that characterize
the value function associated with the optimal control problem. In cases where a

8



closed-form solution exists, these are typically solved by guessing an appropriate
ansatz, substituting the optimal controls for the verification equation, and solv-
ing the equations via Feynmann-Kac representations. However, in most settings
and specifications of dynamics, the optimal policy needs to be derived numeri-
cally. Yet, under certain assumptions, minimum tick size constraints, closed-form
approximations may be amenable.

In the limit the stochastic AMM should thus be efficient if the design solves for
the HJB equation which gives a necessary and sufficient condition for optimality.
It should be noted that the simplicity comes from approximating the solution by
a closed-form solution. For example, Kim et al. [19] have derived for HashCurve
protocol analytical approximations for the solution to an optimal market making
model, under simplifying assumptions that may be relaxed later as the market
evolves. We would like to emphasize, again, that this section provides a general-
ized discussion and you would need to define the market making problem based
on the specific use case.

6 Touching the Surface on AMM Design Considera-
tions

First of all, the main design consideration is based on the specific use case of the
AMM. In this paper we presented a general case for a stochastic AMM but the un-
derlying quantitative model and protocol design would differ substantially based
on the application in question. Kim et al. [20] introduce a stochastic AMM design
for a perpetual futures protocol (for illiquid and novel markets) which requires a
completely different protocol design compared to an AMM for token swaps. For
example in the case of token swaps you could propose a stochastic AMM design
where liquidity is withdrawn when the price escapes the lower end of a computed
range. The mechanism would work with that range orders can be set with auto-
matic withdrawal from the liquidity pool when a range bound is hit so that liq-
uidity providers do not have to actively manage their position. By combining a
stochastic mechanism that dictates automated liquidity adjustment in computed
price ranges you could allow the AMM to de facto function as an active market
maker in a synthetic order book. More specifically, you could apply range orders
where liquidity is automatically withdrawn from unprofitable price ranges when
prices hit the lower end of the stochastic spread. This allows for similar dynam-
ics as seen in order books where liquidity comes in price ranges and is actively
moving based on incoming information.

Based on the specified use case different trade-offs should be considered in the
implementation. Due to the limitations of blockchains most DeFi protocols have
been unable to leverage computational models. You could argue that the main ad-
vantage of a closed-form solution is the possibility to compute things on-chain. For
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example, Swaap Labs [5] — who designed a constant geometric AMM which em-
beds a stochastic spread mechanism — compute the mechanism on-chain where
they use oracles for some of the base variables. However, more advanced models
would be — by current blockchain technology standards — too computationally
heavy to handle. Since the AMM would require a data oracle one could argue to
perform the necessary data pipeline and computations off-chain where the opti-
mal price is fed into the AMM through an oracle. For example, Kim et al. [20]
their stochastic AMM design tries to strike a balance with off-chain computations
where they provide verification procedures for said computations. You could also
decentralize this computation by giving the formula to others to compute the opti-
mal prices. Numerous proposals have been floating around such as one by Suresh,
Latif and Shah [?] who suggest a system where oracle providers have to stake repu-
tation and collateral. Finally, when using oracles numerous design considerations
would need to be taken into account as there are numerous issues such as oracle
lag time, reliability, potential oracle manipulation, etc. For example, samczsun [30]
discusses oracle vulnerabilities and the need to think them through well in DeFi
protocol designs. For example, Kim et al. [21] discuss numerous anti-manipulation
measures for NFT index oracles for HashCurve protocol.

On public blockchains, such as Ethereum, traders can view unconfirmed trans-
actions in the mempool and front-run a trade by putting in an order. For example,
as discussed in a report from Delphi Digital [10], there are just in time (JIT) liquid-
ity providers extracting fees from LPs. Front-running introduces a wealth transfer
from protocol LPs and traders to arbitrageurs — it is essentially a negative exter-
nality on the protocol design and introduces behavior that the stochastic model
would not take into account. Various solutions have been proposed in this regard
such as commit-reveal schemes, systems where unprocessed transactions are kept
hidden or batch orders. The need and design for these mechanisms depends on
the specific use case, design and the underlying blockchain on which the proto-
col is build. You could add a stochastic element to the closed-form computation
so it becomes more difficult to predict the fill-price. For example, Kim et al. [19]
in HashCurve protcol assume a stochastic fill rate which is implement through a
double stochastic mechanism where fills are determined using probabilities from
the same distribution.

You could also argue for a stochastic AMM that has the base model on-chain
where the parameters are tuned according to a stochastic model. AMMs typically
employ off-chain governance mechanisms, whereby token holders exercise voting
rights to adjust various protocol parameters. You could design a more dynamic
and automated system by using a stochastic model for this. The current process of
parameter selection remains predominantly manual and is often carried out by the
core team behind the protocol. Xu et al. [35] propose a semi-automatic parameter
adjustment methodology using reinforcement learning which autonomously gen-
erates intuitive, data-driven governance proposals to adjust protocol parameters.
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You could propose a similar mechanism where the parameters would be automat-
ically tuned using an underlying stochastic model. It should be noted that using
a stochastic model would provide a structured framework through intuitive and
empirically backed assumptions. Machine learning, in its ability to learn the un-
derlying structure and properties of the data, tends to be heavily used for financial
models. However, it is important to emphasise that there are numerous difficul-
ties in this data exercise in the case of limited data and the volatile non-stationary
nature of digital asset prices. The advantage of using closed-form models is that
it can improve model interpretability, parameter estimation, a way to think struc-
turally around a problem. A further advantage of the structured models is that
they are easier ”control” and one can explain the dynamics — at least under the
considered assumptions of the model.

We want to emphasize this discussion only touches the surface as there are a lot
of use case specific model and protocol design applications, and want to reiterate
that this paper is rather a primer on the topic of stochastic AMMs. For example,
Jack et al. [19] provide a discussion on a stochastic AMM model and protocol
design for perpetual futures where they are developing HashCurve protocol.

7 Conclusion

In conclusion, this paper has presented a novel approach to automated market
makers (AMMs) in the burgeoning decentralized finance (DeFi) ecosystem by in-
troducing stochastic bonding curves. By moving away from deterministic AMM
designs that are associated with issues such as deterministic slippage cost, market
risk incomputability and impermanent loss, our proposed stochastic AMM aims
to address these challenges and improve the overall efficiency of the DeFi market.
The stochastic AMM design would emulate a profit-maximizing market maker
and thus facilitate more passive participation from liquidity providers.

We have discussed numerous implementation considerations and potential de-
sign choices for the proposed stochastic AMM, emphasizing the need for cus-
tomization based on specific use cases. As AMMs have been employed in vari-
ous capacities, such as token swaps, perpetual futures market making, and rate
derivatives, the stochastic model and protocol design must be fine-tuned accord-
ingly. With this paper we hope to incentivize further research and development
of stochastic AMMs. As the DeFi ecosystem continues to evolve, we expect that
our proposed stochastic AMM framework will necessitate further refinements to
accommodate new advancements and address emerging risks. Ultimately, this pa-
per lays the groundwork for exploring the potential of stochastic AMMs and their
implications for the future of decentralized finance, paving the way for more effi-
cient and resilient market mechanisms in this rapidly changing domain.
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